简单的数学建模题目和答案

2024-05-17

1. 简单的数学建模题目和答案

    

            

简单的数学建模题目和答案

2. 200分急求一道数学建模题

数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 
 
  一、数学应用题的特点
  我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
  第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
  第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
  第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
  二、数学应用题如何建模
  建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
  第一层次:直接建模。
    根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
                   将题材设条件翻译
                        成数学表示形式
 


应用题      审题                           题设条件代入数学模型      求解
                       选定可直接运用的
                          数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
    从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
    阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
    将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
    将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
    选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题 
一次函数 成本、利润、销售收入等 
二次函数 优化问题、用料最省问题、造价最低、利润最大等 
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 
三角函数 测量、交流量、力学问题等 

3.4加强数学运算能力。
    数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
    利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

 

   摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 
   关键词:创新能力;数学建模;研究性学习。 
   《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: 
   (1)学会提出问题和明确探究方向; 
   (2)体验数学活动的过程; 
   (3)培养创新精神和应用能力。 
   其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 
   数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 
   一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 
   教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 
   如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 
   这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 
   这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 
   2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 
   学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 
   现实原型问题 
   数学模型 
    数学抽象 
   简化原则 
   演算推理 
   现实原型问题的解 
   数学模型的解 
    反映性原则 
   返回解释 
   列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 
   3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 
   高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 
   例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 
   时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990 
   人中数(百万) 39 50 63 76 92 106 123 132 145 
   分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 
   通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 
   四、培养学生的其他能力,完善数学建模思想。 
   由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: 
   (1)理解实际问题的能力; 
   (2)洞察能力,即关于抓住系统要点的能力; 
   (3)抽象分析问题的能力; 
   (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; 
   (5)运用数学知识的能力; 
   (6)通过实际加以检验的能力。 
   只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 
   例2:解方程组 
    
   x+y+z=1 (1) 
    x2+y2+z2=1/3 (2) 
    x3+y3+z3=1/9 (3) 
   分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 
   方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 
   t3-t2+1/3t-1/27=0 (4) 
   函数模型: 
   由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 
   平面解析模型 
   方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 
   总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。




数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 

一、数学应用题的特点 
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 
二、数学应用题如何建模 
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 
第一层次:直接建模。 
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 
将题材设条件翻译 
成数学表示形式 



应用题 审题 题设条件代入数学模型 求解 
选定可直接运用的 
数学模型 
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 
三、建立数学模型应具备的能力 
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 
3.1提高分析、理解、阅读能力。 
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 
3.2强化将文字语言叙述转译成数学符号语言的能力。 
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 
3.3增强选择数学模型的能力。 
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 
函数建模类型 实际问题 
一次函数 成本、利润、销售收入等 
二次函数 优化问题、用料最省问题、造价最低、利润最大等 
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 
三角函数 测量、交流量、力学问题等 

3.4加强数学运算能力。 
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

3. 跪求简单的数学建模分配问题模型,不要百度的,要原创的..

问题的决策变量即分配两类客房从第i天入住到第j天的房间数jix,。而酒店收入最大为问题解决的目标,问题的约束条件如下:第一个约束条件为两类客房的分配量都不应超出各自的需求量,当然,由于分配量越大收入越大,所以当以收入最大为目标时,分配会尽量满足需求;第二个约束要求在连续若干天入住时,每天分配的房间数都不应超过当天房间的提供量 。做完看下面我给的答案对比

跪求简单的数学建模分配问题模型,不要百度的,要原创的..

4. 求两个简单的数学建模问题的答案???

第一个我不能跟你回答,具体的情况有不同的
第二个:
首先要考虑红绿灯,再是人流量,车流量,以及附近的弯道情况,坡度的大小,还有就是一般车辆通过这里的速度,最后考虑他是否是主要干道,比如说就是警车,救护车,119在这里过的频率。能够把这些考虑到就差不多了。如果可以的话你还要考虑附近的建筑,以及他一天的太阳照射情况以及下雨天的时候是什么情况。考虑建筑你就需要想到这里是居民区还是工业区,

5. 简单数学建模题,求助!!!

正解是:
1/车接人的出发时间是不变的,所以提前10分钟到家意味着单程比原来少走5分钟,设原来从车站接到人后返家车行用时为x,则半路接到人后返家车行用时为x-0:05;
2/原来从车站出发为6:00,到家为6:00+x,设步行时间为y,则从车站出发为5:30,到家为5:30+y+x-0:05,因后者比前者早10分钟到家,即后者加0:10等于前者;
3/综合上述,根据等式6:00+x=5:30+y+x-0:05+0:10(两边同消去x,移项得6:00-5:30+0:05-0:10=y),答案出

其实不需要那么复杂的,换个角度思考很简单哦
设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了十分钟,于是带他去车站这段路程汽车跑了五分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55

简单数学建模题,求助!!!

6. 简单的数学建模题目,懂的进

关于第一题肯定可以,不多说了。

第二题
有6支、7支球队的话间隔一天就更没有问题了。
若至少间隔两天,只有6支球队是不可能的,原因如下:
第一天随便找两支,球队比赛;第二天只能从剩下的4支球队再找两支第三天;第三天要想满足条件的话,也只能找剩下的两支球队比赛。第四天就不能找第二、三天比赛的任意一个球队了,而第一天比赛的两个球队不能重复比赛,所以6支球队的单循环赛不可能使得,每个球队的比赛时间都间隔两天。 

7支球队使每支球队在两场比赛之间至少间隔两天的比赛安排是存在的,像第一题那样给出一个方案就可以了。( 当然这时只是找可行方案不用整体的系统分析,也正是因为参赛的球队越多可以间隔的时间越长,才有了第三题推广到n支球队至少可以间隔几天的一般问题的猜想。)

第三题
在不知道答案之前,只能先找找规律了
如果有4支球队,刚好不能间隔1天,也就是5支刚好可以间隔1天;
如果有6支球队,刚好不能间隔2天,也就是7支刚好可以间隔2天。
不能间隔几天的证明方法跟上题是一样的。
接下来我们我理由猜想:如果有2k支球队,刚好不能间隔k-1天(这个是肯定成立的,证明方法与上面完全一样,不用多说了吧);那么接下来的重点就转移到:
若有2k+1支球队,是否一定可以找到一种单循环比赛方案,使得每支球队在两场比赛之间可以间隔k-1天。
给你提供一个分析思路:前k天参见比赛的球队一定是互不相同的;而第k+1天只能是剩下的一支球队与第一天参赛的一支球队比赛;第k+2天参加比赛的也只能是第二天参赛的一支与第一天参赛的另一支球队比赛,……。就这样一点一点分析,分析到最后可行的话就是一定存在,否则的话就得从中找到用得上的一些细节,然后在此基础上再找其他方法或是在此基础上改善。

第四题
关于这个指标,每支球队比赛间隔要适当,也就是既不能太短(休息以及反思战术时间不足)也不能太长(没事实战的练习始终会有松懈或是脱离比赛状态的可能)。这就要再从整体考虑另外一个大问题了。(当然,具体时间间隔你说了算,只要可以自圆其说就行;也可以不说,直接设出一个参数表示)


最后,数学建模这东西是比较有个性化的,离了自己的主动思考肯定是不行的,否则的话就缺少灵性了。这个题我只是说了一下思路(也不一定对),剩下的你自己再分析吧。还有,如果想做好数学建模的话,建议先不要看太多的相关资料,自己拿到一个题从没有思路开始主动分析,知道做出来为止,再找资料验证是不是正确以及其中的不足之处。这样随便给你一个题,你就知道怎么下手了。

7. 数学建模 要先参加校级的吗?

不是,我们学校就不是,全国的比赛要先进行暑期培训,在进行选拔,与校级的比赛没什么很大关系!不过,你可以先参加校级的试一试!
祝你取得好成绩!反正我参加校级的没拿到奖,全国的拿了二等奖!

数学建模  要先参加校级的吗?

8. 求2013年数学建模B题答案 给500分

fileform = 'E:\Desktop\B\附件2\*.bmp';
filepathsrc = 'E:\Desktop\B\附件2\';
file = dir(fileform);
A = cell(1,19);
B=cell(4,19);
for i = 1:19
A{i} = imread([filepathsrc, file(i).name]);
 B{1,i}=A{i}(:,1);
 B{2,i}=A{i}(:,72);
 B{3,i}=A{i}(1,:); % shang
 B{4,i}=A{i}(1,:)
end
C=zeros(19,19);
 for i=1:19
     for j=1:19
         if(i~=j)
             T=size(find(B{1,i}-B{2,j}==0));
             C(i,j)=T(1,1);
         end
     end
 end
C
A=C;
[Y_col,Ind_row]=max(A)   %每列的最大值及行号
 [Y_row,Ind_col]=max(A')    %每行的最大值及列号